Course Specifications

Programme (s) on which the course is given mathematics, pure Mathematics,	n B.Sc.	
	Computer	
science and pure mathematics	-	
-	and statistics	
Major or Minor element of programmes	Major	
Department offering the programme	Mathematics	
Department offering the course	Mathematics	
Academic year / Level	First / 1	
Date of specification approval	September	
2012	•	
A- Basic Information		
Title: Mathematical Analysis (1)	Code:	
M111		
Credit Hours: 3 hrs. Lecture:2 hrs.		
Tutorial: 2 hrs. Practical: 0	Total: 3 hrs.	

Teaching Staff Prof. dr. Mohamed A. Ramadan, Dr. Naglaa M. El-Shazly

B- Professional Information

1 – Overall Aims of Course

- Introduce basic mathematical concepts and techniques for

students

who do not have sufficient mathematical training in calculus.

- Develop skills in the ability to think quantitatively and analysis problems critically.

- Investigates the elementary of mathematics: polynomials, logarithms, trigonometric functions, their inverse, arithmetic combinations and compositions of these functions andfunctionsimplicitlydefinedthroughrelationships between them.

- Explain properties of these functions and the rules for finding their derivatives.

- State theorems about continuous and differentiable functions about limits, and be able to use them in simple, direct applications. (Mean Value Theorem, Rolle theorem).

2 – Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

Having successfully completed the course, student will be able to:

a1- Know the limit of a function at a point or at infinity analytically.

a2- Identify the continuity of functions at points.

a3- Understand the derivatives of functions: constant, power, logarithmic,

exponential, trigonometric, inverse

trigonometric, hyperbolic and inverse hyperbolic.

a4- State theorems about continuous and differentiable functions and be able to use them in simple, direct applications. (Mean Value Theorem, Rolle theorem).

b- Intellectual Skills

b1- Evaluate the routine operations involving the topics in the syllabus.

b2- Analyze a mathematical problem and show logical thinking.

b3- Solve some simple problems in scientific and engineering applications involving function limits, derivatives and continuity of functions.

c- Professional and Practical Skills

c1- Implement basic operations to evaluate limits and derivative of functions.

c2- Apply mathematical methods to a range of problems in scientific and engineering applications involving function limits, derivative and continuity of function.

d- General and Transferable Skills

d1- Have a set of tools and methods that can be applied and transferred.

d2- Weight the outcomes of the course through its use in practical application in different scientific fields.

3- Contents

Торіс	No.	Lecture	Tutorial/Practical
-	of		
	hours		
1-sequences of real	4	1	2
number			
-Algebraic operations on			
sets:			
-Family of sets, Cartesian			
product of sets,			
well ordered set,			
supremum and infimum,			
Denumerable sets			
-Algebraic properties of			
sets of rationaleQ and			
the set of real R			
-Sets in R, Neighborhood,			
Interior, exterior,			
boundary, bounded,			
adherent and limit point			
- Open and closed sets			
,dense set			
-Types of real functions,			
operations on functions			

, bounded functions			
2-function, limits and	14	4	6
continuity			
- Functions , inverse			
functions, limits of a			
function.			
- Continuity of functions,			
cases of discontinuity by			
(δ, ε) definition			
-Increments of a function			
in one variable.			
3-Derivatives of functions.	20	5	10
- Derivative of a function y			
$= x^n$			
- Derivatives of			
trigonometric functions			
- Derivatives of <i>e^x</i> , log x,			
In x and a^x			
- Derivatives of inverse			
trigonometric functions			
- Derivatives of hyperbolic			
functions.			
-Right hand derivatives			
,lift hand derivatives			
4-Some theorems of	16	4	8
differentiable functions			
-Rolle's theorem			
- Cauchys theorem			
- Lagrange's theorem			
-Taylor theorem			
- L'Hospital rule			

4– Teaching and Learning Methods

4.1- Lectures.

4.2. working on hand in assignm	ents	
4.3. Attainting practical classes		
5- Student Assessment Methods		
5 1 Mid term written even	to assass	
understanding compatencies	10 455055	
5 2 Oral ayam	to assass a	ttandanca
and interesting	tu assess a	
5 3 Somester hand in assignment	te to access	
understanding professionalism	15 10 255555	
5 4 Final form writton ovom	to occord	
5.4 Final term written exam	10 255855	
Aggegement Schedule		
Assessment Schedule	Wook 7	
Assessment 2	week /	Q
Assessment 2	Week 5 and Wook 12	0
Assessment 4	Week 13 Wook 14	
Assessment 4	WEEK 14	
Weighting of assessments		
Mid-Term Examination		20%
Semester Work (homework ass	signments	20%
+ oral tests)	C	
Other types of assessment		00%
Final-term written Examination		60%
Total		100%
Any formative only accessments		
6- I ist of references		
6.1 Course notes		
Collected and prepared notes the	t cover the	main tonics
in the course content		mann topics
6 2 Essential books (text books)		
USE ESSENTIAL DUONS (TEAT DUONS)		
W. Rudin, Priciples of Math	ematical	Analysis,2 nd
		· /

6.3 Recommended books

-T.M.Apostol, Mathematical Analysis, Reading, Mass: Addison-Wesley, 1957

-G.Baranenkov, B.Demidovich, "Problems in Mathematical Analysis Translated from the Russian hv

- 6.4 Periodicals, Web sites, ... etc Non.
 - 7- Facilities required for teaching and learning None

Course coordinator: Prof. Mohamed A. Ramadan Head of Department: Prof. Mohamed A. Ramadan Date: / /